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ON CERTAIN CONSERVATION PROPERTIES IN GAS DYNAMICS* 

A.I. GOLUBINSKII and V.N. GOLUBKIN 

A previously unknown invariant of the vertex lines of a stationary baro- 
tropic, ideal gas flow is discovered, An analogue of this invariant and 
of other invariants of the stream and vortex lines is obtained for the 
more general case of non-barotropic flow. 

An equation is obtained describing the variation in the projection 
of the vorticity on the direction of the velocity in three-dimensional 
ideal gas flow. Examples are shown where the projection does not vary 
along the stream lines, and this yields an additional integral of the 
gas-dynamic equations. 

1. Consider the steady flow of an ideal compressible gas. We denote the velocity vector 
by v, 0 = rot v is the vorticity, p is the pressure and p is the density. In gas-dynamics 
thequantities conserved along the stream lines (stream line invariants) are of interest. We 
known, in particular, that along with the entropy (J the Ertel vortex potential E. = (o.Vo)/p 
is also conserved along the stream lines. 

In a barotropic gas flow /l-3/ Ei = (o.Vk),'p serves as the stream line invariant 

(1.1) 

where h is an arbitrary function, constant along the stream lines 

v.Vh =o (1.2) 

Relations (l.l), (1.2) express the Euler-Ertel theorem /l/ for a compressible barotropic 
gas. 

We must also establish the invariants of the vortex lines. The Bernoulli function H 
represents one of these invariants: 

We find that the relations are definitely commutative with respect to interchange of the 
vectors v and 0. This yields a new invariant of the vortex lines and is expressed by the 
following theorem. 

Theorem. Let ~1 be a twice continuously differentiable function constant along the 
vortex lines of the continuous barotropic gas flow 

o.vp = 0 (1.4) 

Then the quantity 61~ = v.'ip will also remain constant along the vortex lines 

0.v (\..Cp)= 0 (1.5) 

To prove the theorem we transform the left side of expression (1.5) using the well-known 
formula for the gradient of a scalar product. We obtain 

~.v(v.V~)=o.(v.v)v~ + o.(Vp.V)v (1.6) 

Applying the operator v.V to (1.4), we reduce the first term on its right-hand side 
to the form 

0. (V.V)VP = --P11. (v.V)o (1.7) 
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Since 0 = rotv, the second term can be written, after interchanging o and VP, as 

0. (Vp.V) v = vp. (0.V) v 

Further, multiplying the Helmholtz-Friedman equation 

(v.V)o = (o.V)v --divv 
term by term by Vp and taking (1.4) into account, we obtain 

0. (Vp.V)v = VP. (v.V)w (1.8) 

The equations (1.7), (1.8) show that the terms on the right-hand side of (1.6) differ 
only in sign and add upt to zero, which proves the theorem. 

We note that the new invariant 8, has, unlike EJ., the same form for flows of incom- 
pressible liquids and a compressible barotropic gas. 

2. The theorem proved above and the properties of invariance (l.l), (1.3) together can 
be generalized to the case of adiabatic flow of a non-barotropic real gas. To do this we put 
in 1:l corresponence the flow in question with parameters (v*, p*, p*), and the isentropic 
(barotropic) flow (v,P, p) with the same configuration of the stream lines and the same 
pressure distribution, suing the transformation /4, 5/ 

v = s*-l',BYiv *1 P = P*, P = S*l’“P* (2.1) 

where s* = P*P*_” is the entropy function of the adiabatic flow constant along the stream lines 
and x is the adiabatic index. 

Relations (1.5), (1.1) and (1.3) hold in the field of isentropic flow, but we must put in 
. _. 

Introducing now the vector 

Jj = sy-l,w &, - \-* x v (s*-*x’) (is* = rot v*) 

and the function pLt, constant along vector lines of the vector B, we find that the theorem 
proved in Sect.1 will be generalized as follows: in an adiabatic non-barotropic flow the 
quantity Or* = s*-ll(?X) v*.Vp* remains constant together with p*, along vector lines of the 
vector B. 

According to (1.3), (2.1) the quantity s*-"" i,*, where i,* is the total enthalpy. will 
also be conserved along vector lines of the vector B. 

Note that these lines do not coincide with the vortex lines of the flow in question. 
The Euler-Ertel theorem is generalized as follows: in an adiabatic, non-barotropic flow, 

the quantity E,.* = (B.Vh)ip, remains constant together with h along the stream lines. 

3. The results of Sect.2 
the form p* = F @,) @ (a*). 

The proof is analogous to 
formation 141 

and B = Ct"h, - v* >. V (CP1)'). 

4. Let us now obtain the 

also hold for a gas with a more general equation of state, of 

that of Sect..?, but we use, in place of (2.11, the trans- 

v = @I,* (u*)v*. p = CD-1 (a*) p* 

equations describing the variation in the projection of the 
vorticity on the direction of the velocity in an ideal gas. We will write the vorticity 
vector in the form of the sum of two terms, one of which is oriented in a direction parallel, 
and the other perpendicular to the velocity vector 

0 = 0.. + o,, (4.1) 

o,, = r- (W.T). o,, = T \ lo ;: 71, ‘c = v/q 

0, = 0 cos y, w,, = 0 sin y 
(4.2) 

where 11 is the angle between the vectors o and v in the plane lI passing through these 
vectors. 

Crocco's theorem /6/ 

0 x v = TVo - Vi, (4.33 

connects the normal component of the vorticity with the change in entropy s and the total 

enthalpy i, (T is the temperature). 
We shall call the quantity Q, = o,/(pq) the projection of the vorticity on the direction 

of the velocity of a compressible gas, and obtain an equation describing the change in the 
generalized projection of the vorticity on the direction of the velocity. By substituting 

(4.1) into the identity diva = Oand using the equations of continuity, we find 

v.'FQ, = --p-Idi\- w, (4.43 
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Applying the divergence operator to both sides of formula (4.2) for % and using theorem 

(4.3) as well as the equation of motion of a gas in the Gromeka-Lamb form and the equation of 
state 

V$-+ox v=-$Vp, p=c$$pT 

where cp is the specific heat at constant pressure, we can show that in isentropic flow ((JE 

const) 

divo,=s(o, .Vp) 

and in isoenergetic flow (i,r conat = i,,) 

diva,= -$$-(q,.Vp) 
P 

(4.5) 

(4.6) 

Substituting (4.5), (4.6) into (4.4) and considering the relative variations in all the 
quantities, we finally obtain (M is the local Mach number). 

&l*g+-2$$ --&lnp (UGconst) (4.7) 

Eo tg P &lnp (i. s const) (4.8) 

E+$p+ 2 1 (X - 1) ML 

dldz E r.V, dldn G n.V 

Equations (4.7), (4.8) show that for Beltrani flow (011 v, y = 0,s) the quantity tiV is 
constant along the stream lines, and this represents a generalization of the second Gromeka- 
Beltrani theorem /l/. The generalized projection of the vorticity on the direction of the 
velocity is conserved along the stream lines alsoin the case when the pressure gradient in 
a direction normal to the stream lines in the II plane is equal to zero. 

In the general case when the above conditions do not hold, the generalized projection of 
the vorticity on the direction of the velocity varies, in the exact formulation, along the 
stream lines in accordance with (4.7), (4.8). At the same time, using the explicit expressions 
for the right-hand sides of the equations obtained above we can show, that in certain approxi- 
mate theories based on expansions in terms of small parameters, the right-hand sides of 
formulas (4.7), (4.8) are of a higher order of smallness than the left-hand sides. Consequently, 
the known integrals of the equations of gas dynamics are supplemented by a new integral 
expressing the conservation, along the stream lines, of the principal terms of the expansion 
of the generalized projection of the vorticity on the direction of the velocity. 

Thus in the theory of a thin compressed layer in /7/ in the case of hypersonic flows past 
bodies, the limit transition E-O (K+ 1, ,w_-CO), is used, where the parameter E character- 
izes the ratio of the densities at the leading shock wave. At finite angles of attack we have 
e, - E. Therefore, according to (4.8) we find that in the problems of three-dimensional 
hypersonic flows past thin wings with low aspect ratio (tgy--'/*,dln pi&- E”~) /8/ or past bodies 
of finite thickness (tgy- i, dln pldn- 1) /9/,the generalized projection of the vorticity on the 
direction of the velocity is constant along the stream lines. This made it possible to obtain 
an analytic solution to these three-dimensional non-linear problems. The important fact here 
is that this property of invariance is universal and holds for flows of real gas, as well as 
for flows of a gas reacting and radiating in the equilibrium and non-equilibrium mode /lo, ll/. 
At the same time the property is not trivial, since the transverse component of the vorticity 
is not invariant. 

In the case of a wing with moderate aspect ratio in hypersonic flow at large angles of 
attach (COS O! - e’/s) we have EO-1. The projection of the vorticity on the direction of the 
velocity is still invariant as before, since Q! Y - 1, dlnpldn-c /12/. 

Further, in the non-linear theory of small perturbations, for transonic flow past a thin 
wing with a large aspect ratio (the relative thickness and the aspect ratio are of the order 
of 6 and 6J'* respectively, the number M of the incoming flow is nearly unity 1 i - Al,* I-’ 

&“I), using the known estimates /13, 14/ for the orders of magnitude of the quantities, we 
obtain that in the outer region of flow (the coordinate along the normal to the wing y-b-'/,), 
as well as in the inner region near the wing, (6,- 6) Ed- 1,tgv-@8, d lap/&- 6. Therefore the 
projection of the vorticity on the direction of the velocity is preserved along the stream 
lines, but in the outer region the transverse component a,,, is also preserved, while in the 
inner region the component of vorticity normal to the wing varies along the stream lines. 

5. Equations (4,7), (4,8) can be generalized to the case of the non-steady motion of 
gas. For example, in place of (4.7) we can have (t is the time) 



88 

-&ls2”=-q+.$~np_ 1 -4 ) v. -?-2.L 
cos y 4 a 

v = o/o, dldt = alat + v.V 

In the theory of a non-steady thin compressed layer the generalized projection of the 
vorticity on the direction of velocity is constant along the trajectories only in the case 
of flow past a thin wing of small aspect ratio, unlike the stationary case /9/. 
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COMPATIBILITY EQUATIONS, STRESS FUNCTIONS, AND VARIATIONAL PRINCIPLES 
IN THE THEORY OF PRESTRESSED SHELLS* 

L.M. ZUBOV 

General statements of the theory of small deformations of thin shells 
with initial stresses are considered /l/. Compatibility equations are 
derived for the kinematic quantities, functions are found that satisfy 
the equilibrium equations identically, different variational principles 
of statics are formulated and proved, and distortion boundary conditions 
are obtained. The presence of initial stresses induces substantial 
singularitiesinto these sectionsofthetheory as compared with the linear 
theory of unstressed shells /2-S/. These singularities are due to the 
fact that the specific potential energy in the theory of small defomlations 
of elastic shells with initial stresses depends not only on the tensors 
governing the change in metric and curvature of the surface, but also the 
rotation vector /l/. 

The results obtained can be applied in shell stability problems as 
well as in the analysis of large shell deformations by the method of 
successive loadings when a linear problem of small deformations measured 
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